Galaxies and the History of the Universe

In this activity, you will explore how galaxies move within the cosmos, and how their positions and movement tell us about the history of our universe.

1. **Practice graphing velocity vs. distance.**

What would you expect the velocity vs. distance graphs to look like for the following scenarios? (Your graphs do not need to include units or scales, but do show where 0 is for both axes. Positive velocities are AWAY from you. Negative velocities are TOWARD you.)

a. “Static universe” analogy: You are standing still in a park with five trees. Graph velocity vs. distance of the trees, relative to you. Explain your reasoning.

![Graph: Velocity vs. Distance (Static Universe)]](image)

Trees are not moving, so they all have a velocity of 0.

Their distances to you can be different.

b. “Random motion universe” analogy: You are at a shopping mall with five friends. You are waiting in a sitting area while the others shop at different stores. Graph velocity vs. distance of your friends, relative to you. Explain your reasoning.

![Graph: Velocity vs. Distance (Random Motion Universe)]](image)

The friends’ velocities will be random. Some may be moving toward you and others may be moving away from you.

The friends’ distances to you will be different, and will not have any particular relationship to their velocity.

c. “Expanding universe” analogy: You and five other people are standing close together in a line. Imagine that the people in front of you start running a race, but each person in the line runs faster than the person behind them and doesn’t change speed. Graph velocity vs. distance of the runners during one moment of the race, relative to you. Explain your reasoning.

![Graph: Velocity vs. Distance (Expanding Universe)]](image)

The runners have different velocities, with the person in front running the fastest.

Since the runners all started from basically the same place, and they all run for the same amount of time, the fastest runner will be the farthest away. Their distances are proportional to their velocity.

What does the line of runners look like compared to the start of the race?

The runners will be in the same relative positions (because no runner is faster than the person in front of them. Basically, the line of runners gets stretched out (or expands) compared with the start of the race.
Now you will examine real astronomical data to determine how galaxies in our universe behave. In the online interactive environment, you will:

- use actual spectra data to determine galaxy velocities
- use a galaxy’s size in the sky to estimate how far away it is

2. **Open the Hubble and the Big Bang Interactive.**
 projects.wwtambassadors.org/hubble-big-bang

3. **Choose four galaxies to collect data for and fill in the table below.**
 (You may work with a partner and combine your data to include all eight galaxies).

 Velocity calculation:
 \[v = c \left(\frac{\lambda_{\text{obs}}}{\lambda_{\text{rest}}} - 1 \right) \]

 - \(v \) is the galaxy’s velocity in \(\text{km/s} \)
 - \(c \) is the speed of light: 300,000 \(\text{km/s} \)
 - \(\lambda_{\text{obs}} \) is the observed wavelength of H-\(\alpha \) in the galaxy’s spectrum
 - \(\lambda_{\text{rest}} \) is the rest wavelength of H-\(\alpha \): 656.3 nm (nm stands for nanometer, which is 1 billionth of a meter)

 Distance estimation:
 - When measuring the galaxy’s angular size, be sure to rotate the galaxy until its longest dimension is vertical, then match the viewport to the galaxy’s extent (not the circle marking the galaxy).
 - So that another scientist could reproduce your work, describe how you have chosen to define the galaxy’s “edge” in your measurements:

 Answers will vary.

 - Remember that galaxies of one type are not actually all the same size, so our estimated distances have large uncertainties.

<table>
<thead>
<tr>
<th>Galaxy name (you can shorten it as long as you can still identify it)</th>
<th>Estimated distance to galaxy (Mpc)</th>
<th>Observed wavelength of H-(\alpha) line (nm)</th>
<th>Velocity of galaxy (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers will vary.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **Graph the velocity vs. distance for your galaxies.**

 - Identify the largest velocity and distance values in your (and if applicable, your partner’s) data and use them to set an appropriate scale for your graph.
 - Label the axis hash marks with velocity and distance values relevant to your graph’s scale. (Your graph might not have the same scale as your classmates’ graphs).

5. **Compare your graph with the sketches you made in Question 1 and identify what type of universe is consistent with your galaxy data:**

 a. static universe
 b. a random-motion universe
 c. an expanding universe

6. **Draw a trendline through your data points and calculate its slope.**

 - Our Milky Way is at (0, 0) on the graph, so the trendline should go through the origin.
 - Roughly the same number of data points should be above and below the trendline.
 - Because the trendline goes through the origin, the slope is equal to any y-value on the line divided by the corresponding x-value.
 - Identify the unit of the slope. (It is the unit of the y-variable divided by the unit of the x-variable and will likely seem unusual.)

 \[
 \text{Value of slope} = \frac{\text{Will vary. Anything between 30-70 is reasonable.}}{} \quad \text{Unit of slope: } \frac{\text{km/s}}{\text{Mpc}}
 \]
7. Consider your galaxy data and what they tell us about the universe.

a. Let us reconsider Question 1c about the runners, where each runner runs faster than the person behind them. Describe in words what the velocity vs. distance graph for the runners looks like at some moment after the race has started:

The velocity vs. distance graph for the runners is a straight line that goes through the origin. (The faster the runner, the farther away they end up.)

b. After the runners have been running for some time, describe in words what has happened to the line of runners compared with the start.

The runners will be in the same relative positions (because no runner is faster than the person in front of them. Basically, the line of runners gets stretched out [or expands] compared with the start of the race.

c. If you “run the movie backward,” what happens to the line of runners?

The line of runners will contract as they get closer and closer to each other and eventually end up back where they started, with all the runners in one place and almost touching each other.

d. Now consider your galaxy data and the trendline you drew. In what ways are your galaxies like the runners?

The galaxy data has a linear trend like the runners, where the most distant galaxies are moving the fastest.

e. Based on your data, what can you conclude about what is currently happening to the universe?

The runners are in a line that is getting stretched farther and farther apart (expanding). Because their velocity vs. distance plot shows the same behavior, the galaxies must also be moving farther and farther apart.

f. If you “run the movie of the universe” backward, what do you expect to find?

A long time ago, the galaxies must all have been together in one place.

g. Explain how your galaxy data support the big bang theory of an expanding universe.

If our data show that the galaxies used to be together in one place and are now moving apart from each other, this tells us that the universe is expanding and that everything began at one point known as the big bang.

h. The slope you calculated in Question 6 is your estimate of the Hubble constant (\(H_0 \), pronounced “h-nought”). Write your estimated value and its unit here:

\[H_0 = \text{Will vary. Anything between 30-150 km/s/Mpc is reasonable (and is closer to today's accepted value than what Edwin Hubble himself measured).} \]