ThinkSpace: Spatial Thinking in Middle School Astronomy Labs

Patricia S. Udomprasert, Alyssa A. Goodman, Susan Sunbury, Philip M. Sadler, Erin Johnson, Mary E. Dussault

Harvard-Smithsonian Center for Astrophysics

Julia Plummer
Pennsylvania State University

Helen Zhihui Zhang
Boston College

This work has been funded by NSF award DRL-1503395
ThinkSpace labs teach astronomy while supporting spatial thinking skills, like imagining a scene from multiple viewpoints.
Project OVERVIEW

ThinkSpace labs teach astronomy while supporting spatial thinking skills, like imagining a scene from multiple viewpoints.
ThinkSpace labs teach astronomy while supporting spatial thinking skills, like imagining a scene from multiple viewpoints.

The Three Labs

1) Moon phases and eclipses
2) Planetary systems around stars other than the Sun
3) Celestial motions within the broader universe
Spatial Thinking and STEM

- Spatial skills correlate with performance in science domains, and likelihood to enter a career in STEM (e.g. Hegarty, 2014, Wai et al. 2009, 2010)
Spatial Thinking and STEM

- Spatial skills correlate with performance in science domains, and likelihood to enter a career in STEM (e.g. Hegarty, 2014, Wai et al. 2009, 2010)
Spatial Thinking and STEM

• Spatial skills are malleable and can improve with practice (e.g. Uttal et al., 2013)
Spatial Thinking and STEM

• Spatial skills are malleable and can improve with practice (e.g. Uttal et al., 2013)
Perspective Taking

16-item task
Liben, Downs, & Bower, 2015
Perspective Taking

16-item task
Liben, Downs, & Bower, 2015
WWT ThinkSpace Moon Lab

• 3-day lab experience tested with middle school students
• Focus on WHY we experience Moon Phases and Eclipses
• Students use physical and virtual models (WorldWide Telescope) to understand the Moon phenomena and practice perspective taking skills
Modeling Moon Phases

Physical model
lamp/styrofoam balls
Modeling Moon Phases

Physical model
- lamp/styrofoam balls

Virtual model
- WorldWide Telescope

![Image of Earth, Moon, and Sun models](image.png)
Modeling Moon Phases

Physical model Virtual model

• Students use models to practice switching mentally between 2D “sky” view and 3D “space” view of Moon - *perspective taking*
Research Questions

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?
Research Questions

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?

RQ 2: Do students’ spatial skills (e.g. perspective taking) improve after completing a ThinkSpace Lab?
Pilot Testing, Dec 2015

- Distractor-driven multiple choice (MC) questions from the Astronomy and Space Science Concept Inventory (Sadler et al, 2010): 11 questions about Moon Phases and Eclipses on pre/post assessments.
Pilot Testing, Dec 2015

- Distractor-driven multiple choice (MC) questions from the Astronomy and Space Science Concept Inventory (Sadler et al, 2010): 11 questions about Moon Phases and Eclipses on pre/post assessments.

\[
\text{Effect Size} = \frac{\text{Average}(\text{Posttest Score} - \text{Pretest Score})}{\text{stdev}(\text{Pretest Score})}
\]
Pilot Testing, Dec 2015

- **Distractor-driven multiple choice (MC) questions from the Astronomy and Space Science Concept Inventory (Sadler et al, 2010):** 11 questions about Moon Phases and Eclipses on pre/post assessments.

\[
\text{Effect Size} = \frac{\text{Average}(\text{Posttest Score} - \text{Pretest Score})}{\text{stdev}(\text{Pretest Score})}
\]

- Cohen’s d ~ 0.5 → medium effect
- Cohen’s d >0.7 → large effect
Pilot Testing, Dec 2015

- N=83 sixth grade students, 3-day intervention

Cohen’s d ~ 0.5 \rightarrow \text{medium effect}

Cohen’s d >0.7 \rightarrow \text{large effect}
Pilot Testing, Dec 2015

- N=83 sixth grade students, 3-day intervention

- Moon Phases assessment: Cohen’s d = 2.07±0.12

Cohen’s d ~ 0.5 \(\rightarrow\) medium effect
Cohen’s d >0.7 \(\rightarrow\) large effect
Pilot Testing, Dec 2015

- N=83 sixth grade students, 3-day intervention
- Moon Phases assessment: Cohen’s d = 2.07±0.12

DOUBLE the effect size of a prior version of the Moon Lab that did NOT emphasize perspective taking skills

Cohen’s d ~ 0.5 → medium effect
Cohen’s d >0.7 → large effect
Pilot Test Results

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?
Pilot Test Results

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?

Maybe.
Need more data.
Pilot Test Results

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?

Maybe.
Need more data.

RQ 2: Do students’ spatial skills (e.g. perspective taking) improve after completing a ThinkSpace Lab?
Pilot Test Results

RQ 1: Are spatial skills levels predictive of students’ content learning gains from these spatially rich labs?

 Maybe. Need more data.

RQ 2: Do students’ spatial skills (e.g. perspective taking) improve after completing a ThinkSpace Lab?

Cohen’s $d = 0.34 \pm 0.07$
Takeaways

- ThinkSpace Moon Lab is effective (Cohen’s d = 2.07±0.12, N=83)
- Perspective taking skills increased (Cohen’s d = 0.34±0.07) - but need to do a test/re-test with control group
- 240 additional students will pilot test Moon Lab in winter/spring 2016
- Goal: learn how to best support students of all spatial thinking abilities in astronomy classes.
- The ThinkSpace Moon Lab is free to download and use.

Visit WWT Booth #322

Or Email pudompra@cfa.harvard.edu