From the
AERA Online Paper Repository
http://www.aera.net/repository

Paper Title Optimal Model Order for a Moon Phases Lab With Virtual and Physical Components

Author(s) Patricia Udomprasert, Harvard University; Alyssa Goodman, Harvard University; Philip M. Sadler, Harvard University; E Johnson, Harvard University; Erin Lottridge; Jon Jackson; Ana-Maria Constantin; Z.H. Zhang; S Sunbury; Qin Wang, College of Physical Science & Technology; M Dussault; Laura Trouille, Northwestern University

Session Title Connecting Virtual Tools and Physical Activities to Enhance Science Learning

Session Type Session Paper

Presentation Date 4/19/2015

Presentation Location Chicago, Illinois

Descriptors

Methodology

Unit Division C - Learning and Instruction

Each presenter retains copyright on the full-text paper. Repository users should follow legal and ethical practices in their use of repository material; permission to reuse material must be sought from the presenter, who owns copyright. Users should be aware of the AERA Code of Ethics.

Citation of a paper in the repository should take the following form:
Objective:
We designed a middle school lab experience to help students understand the cause of the Moon’s phases, using a combination of physical models (styrofoam balls and lamps) and computer models (WorldWide Telescope, WWT). We tested how model order (Foam then WWT, vs. WWT then Foam) would impact student learning.

Theoretical framework:
Studies show that a blend of virtual and physical models may be more advantageous than one or the other alone (e.g. Liu, 2006). Little research has been done on optimal sequencing of virtual/physical models in classrooms, but Carmichael et al. (2010) found evidence that students may benefit from using a physical model prior to the virtual model.

Methods & Data
We use quasi-experimental methods to compare different sequencings. Half of students used the foam model first, then WWT. The other half used WWT first, then the foam model. We created identical pre/posttests that include multiple choice (MC) content questions about the Moon’s phases, and open response questions that probe understanding. The former were selected from the Astronomy and Space Science Concept Inventory (ASSCI, Sadler, 2009), a compilation of
distractor-driven multiple choice questions. Open-response questions embedded throughout the activities were scored using a Knowledge Integration (KI, Linn, 2000) rubric. We also included one “spatial skills” question asking students to identify which pattern would fold into the cube shown.

8. Which of the patterns when folded will make the cube shown?

Completed Cube

Patterns:

A.

B.

C.

D.

E. None of the above

Results
Our results include data from the cohorts of students shown in Table 1.
For the cohorts where we have completed coding of the Open Response questions (A14, C14, and D14), we combined the multiple choice and open response scores for students in the pre and post assessment. Using OLS ANOVA, we found that the students’ pre-test answer on the spatial skills “cube” question was the only significant predictor of the post-test final score, other than the pre-test score. Model order is not a significant predictor of learning outcome. The results are presented in Table 2.
For cohorts where we have coded Knowledge Integration responses, most students (>80%) began the Moon Lab with a KI score ≤ 1, showing that misconceptions are common. Figure 2 shows that on the posttest, 18% of students who used WWT first have low KI scores, compared with 40% of students who used the Foam first.

Table 1: Timeline and demographics for study. School X and School Y are both in the Greater Boston Area. School X is an urban school, and School Y is a suburban school.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TEACHER</th>
<th>GRADE</th>
<th>SCHOOL</th>
<th>N STUDENTS</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 2013</td>
<td>A</td>
<td>8</td>
<td>X</td>
<td>N Foam-WWT=40</td>
<td>N WWT-Foam=28</td>
</tr>
<tr>
<td>Dec 2013</td>
<td>B</td>
<td>6</td>
<td>Y</td>
<td>N Foam-WWT=40</td>
<td>N WWT-Foam=35</td>
</tr>
<tr>
<td>Feb 2014</td>
<td>C</td>
<td>6</td>
<td>Y</td>
<td>N Foam-WWT=34</td>
<td>N WWT-Foam=37</td>
</tr>
<tr>
<td>Mar 2014</td>
<td>A</td>
<td>8</td>
<td>X</td>
<td>N Foam-WWT=42</td>
<td>N WWT-Foam=38</td>
</tr>
<tr>
<td>Oct 2014</td>
<td>D</td>
<td>6</td>
<td>X</td>
<td>N Foam-WWT=38</td>
<td>N WWT-Foam=37</td>
</tr>
</tbody>
</table>

Table 2: OLS ANOVA results where the dependent variable is the Post-test score

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CATEGORIES</th>
<th>COEFFICIENT</th>
<th>Std. ERR.</th>
<th>t RATIO</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>3.257</td>
<td>0.843</td>
<td>3.864</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pre-test score</td>
<td></td>
<td>0.882</td>
<td>0.058</td>
<td>15.17</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pre-cube question</td>
<td>incorrect</td>
<td>-0.396</td>
<td>0.1397</td>
<td>-2.833</td>
<td>0.0049</td>
</tr>
<tr>
<td></td>
<td>correct</td>
<td>0.396</td>
<td>0.1397</td>
<td>2.833</td>
<td>0.0049</td>
</tr>
<tr>
<td>Model Order</td>
<td>Foam-WWT</td>
<td>-0.225</td>
<td>0.135</td>
<td>-1.674</td>
<td>0.0949</td>
</tr>
<tr>
<td></td>
<td>WWT-Foam</td>
<td>0.225</td>
<td>0.1346</td>
<td>1.674</td>
<td>0.949</td>
</tr>
</tbody>
</table>
Significance

Our partner teachers suggested a learning progression where students make observations of the moon over a lunar cycle; recreate a lunar cycle using the styrofoam ball model; then deepen understanding by manipulating the computer model - i.e., they expressed a strong preference for using the foam model first. 81% of students also preferred or wished they had the styrofoam model first, or had no preference about model order. Yet we have some indication from our open response data, that students who had the less preferred order (WWT, then foam) ended the experience with fewer misconceptions. We hypothesize that this could be due to the realistic visualization providing students with a better foundation for understanding how to manipulate and use the physical model effectively. As this result contradicts existing research (Carmichael et al., 2010), this topic warrants further study.

References

